Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945473

RESUMO

When somatic cells acquire complex karyotypes, they are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons have been limited by relatively small sample sizes. Here, we developed an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We applied this approach to 2,125 frontal cortical neurons from a neurotypical human brain. This approach identified 226 CNV neurons, as well as a class of CNV neurons with complex karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contained fewer, but longer, genes.

2.
Quantum Mach Intell ; 2(1): 1-26, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879908

RESUMO

Motivated by the problem of classifying individuals with a disease versus controls using a functional genomic attribute as input, we present relatively efficient general purpose inner product-based kernel classifiers to classify the test as a normal or disease sample. We encode each training sample as a string of 1 s (presence) and 0 s (absence) representing the attribute's existence across ordered physical blocks of the subdivided genome. Having binary-valued features allows for highly efficient data encoding in the computational basis for classifiers relying on binary operations. Given that a natural distance between binary strings is Hamming distance, which shares properties with bit-string inner products, our two classifiers apply different inner product measures for classification. The active inner product (AIP) is a direct dot product-based classifier whereas the symmetric inner product (SIP) classifies upon scoring correspondingly matching genomic attributes. SIP is a strongly Hamming distance-based classifier generally applicable to binary attribute-matching problems whereas AIP has general applications as a simple dot product-based classifier. The classifiers implement an inner product between N = 2 n dimension test and train vectors using n Fredkin gates while the training sets are respectively entangled with the class-label qubit, without use of an ancilla. Moreover, each training class can be composed of an arbitrary number m of samples that can be classically summed into one input string to effectively execute all test-train inner products simultaneously. Thus, our circuits require the same number of qubits for any number of training samples and are O ( log N ) in gate complexity after the states are prepared. Our classifiers were implemented on ibmqx2 (IBM-Q-team 2019b) and ibmq_16_melbourne (IBM-Q-team 2019a). The latter allowed encoding of 64 training features across the genome.

3.
PLoS Comput Biol ; 16(3): e1007737, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182236

RESUMO

The identification of structural variants using short-read data remains challenging. Most approaches that use discordant paired-end sequences ignore non-trivial signatures presented by variants containing 3 breakpoints, such as those generated by various copy-paste and cut-paste mechanisms. This can result in lower precision and sensitivity in the identification of the more common structural variants such as deletions and duplications. We present SVXplorer, which uses a graph-based clustering approach streamlined by the integration of non-trivial signatures from discordant paired-end alignments, split-reads and read depth information to improve upon existing methods. We show that SVXplorer is more sensitive and precise compared to several existing approaches on multiple real and simulated datasets. SVXplorer is available for download at https://github.com/kunalkathuria/SVXplorer.


Assuntos
Variação Estrutural do Genoma/genética , Genômica/métodos , Recombinação Genética/genética , Software , Análise por Conglomerados , Simulação por Computador , Bases de Dados Genéticas , Genoma Humano/genética , Humanos , Análise de Sequência de DNA
4.
Med Phys ; 43(6): 2933-2935, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277042

RESUMO

PURPOSE: To present a clinical case in which real-time intratreatment imaging identified an multileaf collimator (MLC) leaf to be consistently deviating from its programmed and logged position by >1 mm. METHODS: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used to capture cine during treatment images. The author serendipitously visually identified a suspected MLC leaf displacement that was not otherwise detected. The leaf position as recorded on the EPID images was measured and log-files were analyzed for the treatment in question, the prior day's treatment, and for daily MLC test patterns acquired on those treatment days. Additional standard test patterns were used to quantify the leaf position. RESULTS: Whereas the log-file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3 ± 0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. CONCLUSIONS: It has been clinically observed that log-file derived leaf positions can differ from their actual position by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trust log-file records. Intratreatment EPID imaging provides a method to capture departures from MLC planned positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...